Tolbutamide and diazoxide modulate phospholipase C-linked Ca(2+) signaling and insulin secretion in beta-cells.

نویسندگان

  • C Schöfl
  • J Börger
  • T Mader
  • M Waring
  • A von zur Mühlen
  • G Brabant
چکیده

Arginine vasopressin (AVP), bombesin, and ACh increase cytosolic free Ca(2+) and potentiate glucose-induced insulin release by activating receptors linked to phospholipase C (PLC). We examined whether tolbutamide and diazoxide, which close or open ATP-sensitive K(+) channels (K(ATP) channels), respectively, interact with PLC-linked Ca(2+) signals in HIT-T15 and mouse beta-cells and with PLC-linked insulin secretion from HIT-T15 cells. In the presence of glucose, the PLC-linked Ca(2+) signals were enhanced by tolbutamide (3-300 microM) and inhibited by diazoxide (10-100 microM). The effects of tolbutamide and diazoxide on PLC-linked Ca(2+) signaling were mimicked by BAY K 8644 and nifedipine, an activator and inhibitor of L-type voltage-sensitive Ca(2+) channels, respectively. Neither tolbutamide nor diazoxide affected PLC-linked mobilization of internal Ca(2+) or store-operated Ca(2+) influx through non-L-type Ca(2+) channels. In the absence of glucose, PLC-linked Ca(2+) signals were diminished or abolished; this effect could be partly antagonized by tolbutamide. In the presence of glucose, tolbutamide potentiated and diazoxide inhibited AVP- or bombesin-induced insulin secretion from HIT-T15 cells. Nifedipine (10 microM) blocked both the potentiating and inhibitory actions of tolbutamide and diazoxide on AVP-induced insulin release, respectively. In glucose-free medium, AVP-induced insulin release was reduced but was again potentiated by tolbutamide, whereas diazoxide caused no further inhibition. Thus tolbutamide and diazoxide regulate both PLC-linked Ca(2+) signaling and insulin secretion from pancreatic beta-cells by modulating K(ATP) channels, thereby determining voltage-sensitive Ca(2+) influx.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Plasma membrane depolarization as a determinant of the first phase of insulin secretion.

The role of plasma membrane depolarization as a determinant of the initial phase of insulin secretion was investigated. NMRI mouse islets and beta-cells were used to measure the kinetics of insulin secretion, ATP and ADP content, membrane potential, and cytosolic free Ca(2+) concentration ([Ca(2+)](i)). The depolarization of metabolically intact beta-cells by KCl corresponded closely to the the...

متن کامل

Glucose and Pharmacological Modulators of ATP-Sensitive K+ Channels Control [Ca2+]c by Different Mechanisms in Isolated Mouse α-Cells

OBJECTIVE We studied how glucose and ATP-sensitive K(+) (K(ATP)) channel modulators affect alpha-cell [Ca(2+)](c). RESEARCH DESIGN AND METHODS GYY mice (expressing enhanced yellow fluorescent protein in alpha-cells) and NMRI mice were used. [Ca(2+)](c), the K(ATP) current (I(KATP), perforated mode) and cell metabolism [NAD(P)H fluorescence] were monitored in single alpha-cells and, for compar...

متن کامل

A KATP Channel-Dependent Pathway within α Cells Regulates Glucagon Release from Both Rodent and Human Islets of Langerhans

Glucagon, secreted from pancreatic islet alpha cells, stimulates gluconeogenesis and liver glycogen breakdown. The mechanism regulating glucagon release is debated, and variously attributed to neuronal control, paracrine control by neighbouring beta cells, or to an intrinsic glucose sensing by the alpha cells themselves. We examined hormone secretion and Ca(2+) responses of alpha and beta cells...

متن کامل

Glucose-dependent modulation of insulin secretion and intracellular calcium ions by GKA50, a glucokinase activator.

Because glucokinase is a metabolic sensor involved in the regulated release of insulin, we have investigated the acute actions of novel glucokinase activator compound 50 (GKA50) on islet function. Insulin secretion was determined by enzyme-linked immunosorbent assay, and microfluorimetry with fura-2 was used to examine intracellular Ca(2+) homeostasis ([Ca(2+)](i)) in isolated mouse, rat, and h...

متن کامل

Potentiation of Sulfonylurea Action by an EPAC-selective cAMP Analog in INS-1 Cells: Comparison of Tolbutamide and Gliclazide and a Potential Role for EPAC Activation of a 2-APB-sensitive Ca Influxs

Tolbutamide and gliclazide block the KATP channel Kir6.2/Sur1, causing membrane depolarization and stimulating insulin secretion in pancreatic beta cells. We examined the ability of the EPAC-selective cAMP analog 8-pCPT-29-O-Me-cAMP-AM to potentiate the action of these drugs and the mechanism that might account for it. Insulin secretion stimulated by both 200 mM tolbutamide and 20 mM gliclazide...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Endocrinology and metabolism

دوره 278 4  شماره 

صفحات  -

تاریخ انتشار 2000